If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-14580x+87489=0
a = 1; b = -14580; c = +87489;
Δ = b2-4ac
Δ = -145802-4·1·87489
Δ = 212226444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{212226444}=\sqrt{36*5895179}=\sqrt{36}*\sqrt{5895179}=6\sqrt{5895179}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14580)-6\sqrt{5895179}}{2*1}=\frac{14580-6\sqrt{5895179}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14580)+6\sqrt{5895179}}{2*1}=\frac{14580+6\sqrt{5895179}}{2} $
| -3x-(6x+7)=-3x+11 | | x^2-14580+87489=0 | | 18x^2-61x=62 | | x-0.065x=500 | | 3n^2+4n+7=5n^2 | | 9x/10=5/4 | | 0,5b+035=1/2 | | x^2+117x+1620=0 | | p+17=50 | | 5x^2+40x+48=0 | | x^2+59x+1620=0 | | 0=x^2+59x+1620 | | 0=x^2+59x+1620 | | x+x+x+2x+2x=25 | | x=10+5 | | x-((x*0.6)*0.1)=4373.20 | | 7x+21=7(x+3) | | x+8-(8/x+8)=16 | | 2w+2w(w+8)=256 | | 8x-3(x+5)=13 | | 11(p+11)=10p | | 1/4x+9=+16 | | a-76=69 | | 15x+4=17x-14 | | 4x+20=16-4x | | 18x-11=22x-33 | | 32-5x=-13+4x | | Y^2+6y-79=0 | | 3-x=8x-12 | | Y2+6y-79=0 | | 6(y-2)+3=3y-15 | | 3/4(8p-4)=39 |